3.4.54 \(\int \frac {\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx\) [354]

3.4.54.1 Optimal result
3.4.54.2 Mathematica [A] (verified)
3.4.54.3 Rubi [A] (warning: unable to verify)
3.4.54.4 Maple [B] (verified)
3.4.54.5 Fricas [B] (verification not implemented)
3.4.54.6 Sympy [F]
3.4.54.7 Maxima [F]
3.4.54.8 Giac [F(-1)]
3.4.54.9 Mupad [B] (verification not implemented)

3.4.54.1 Optimal result

Integrand size = 31, antiderivative size = 171 \[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=-\frac {2 A \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{a^{3/2} d}+\frac {(A-i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{3/2} d}+\frac {(A+i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{3/2} d}+\frac {2 b (A b-a B)}{a \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}} \]

output
-2*A*arctanh((a+b*tan(d*x+c))^(1/2)/a^(1/2))/a^(3/2)/d+(A-I*B)*arctanh((a+ 
b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/(a-I*b)^(3/2)/d+(A+I*B)*arctanh((a+b*ta 
n(d*x+c))^(1/2)/(a+I*b)^(1/2))/(a+I*b)^(3/2)/d+2*b*(A*b-B*a)/a/(a^2+b^2)/d 
/(a+b*tan(d*x+c))^(1/2)
 
3.4.54.2 Mathematica [A] (verified)

Time = 1.34 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.09 \[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\frac {-\frac {2 A \left (a^2+b^2\right ) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a}}+\frac {a (a+i b) (A-i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b}}+\frac {a (a-i b) (A+i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b}}+\frac {2 b (A b-a B)}{\sqrt {a+b \tan (c+d x)}}}{a \left (a^2+b^2\right ) d} \]

input
Integrate[(Cot[c + d*x]*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(3/2),x 
]
 
output
((-2*A*(a^2 + b^2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/Sqrt[a] + (a 
*(a + I*b)*(A - I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/Sqrt 
[a - I*b] + (a*(a - I*b)*(A + I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a 
 + I*b]])/Sqrt[a + I*b] + (2*b*(A*b - a*B))/Sqrt[a + b*Tan[c + d*x]])/(a*( 
a^2 + b^2)*d)
 
3.4.54.3 Rubi [A] (warning: unable to verify)

Time = 1.36 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.14, number of steps used = 17, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.516, Rules used = {3042, 4092, 27, 3042, 4136, 25, 3042, 4022, 3042, 4020, 25, 73, 221, 4117, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\tan (c+d x) (a+b \tan (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 4092

\(\displaystyle \frac {2 \int \frac {\cot (c+d x) \left (b (A b-a B) \tan ^2(c+d x)-a (A b-a B) \tan (c+d x)+A \left (a^2+b^2\right )\right )}{2 \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b (A b-a B)}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\cot (c+d x) \left (b (A b-a B) \tan ^2(c+d x)-a (A b-a B) \tan (c+d x)+A \left (a^2+b^2\right )\right )}{\sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b (A b-a B)}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {b (A b-a B) \tan (c+d x)^2-a (A b-a B) \tan (c+d x)+A \left (a^2+b^2\right )}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b (A b-a B)}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 4136

\(\displaystyle \frac {A \left (a^2+b^2\right ) \int \frac {\cot (c+d x) \left (\tan ^2(c+d x)+1\right )}{\sqrt {a+b \tan (c+d x)}}dx+\int -\frac {a (A b-a B)+a (a A+b B) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b (A b-a B)}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {A \left (a^2+b^2\right ) \int \frac {\cot (c+d x) \left (\tan ^2(c+d x)+1\right )}{\sqrt {a+b \tan (c+d x)}}dx-\int \frac {a (A b-a B)+a (a A+b B) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b (A b-a B)}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \left (a^2+b^2\right ) \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx-\int \frac {a (A b-a B)+a (a A+b B) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b (A b-a B)}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 4022

\(\displaystyle \frac {2 b (A b-a B)}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {A \left (a^2+b^2\right ) \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx-\frac {1}{2} a (b+i a) (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a (-b+i a) (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 b (A b-a B)}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {A \left (a^2+b^2\right ) \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx-\frac {1}{2} a (b+i a) (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a (-b+i a) (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 4020

\(\displaystyle \frac {2 b (A b-a B)}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {A \left (a^2+b^2\right ) \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx+\frac {i a (-b+i a) (A-i B) \int -\frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}+\frac {i a (b+i a) (A+i B) \int -\frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}}{a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 b (A b-a B)}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {A \left (a^2+b^2\right ) \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx-\frac {i a (-b+i a) (A-i B) \int \frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}-\frac {i a (b+i a) (A+i B) \int \frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}}{a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {2 b (A b-a B)}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {A \left (a^2+b^2\right ) \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx-\frac {a (b+i a) (A+i B) \int \frac {1}{-\frac {i \tan ^2(c+d x)}{b}-\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{b d}+\frac {a (-b+i a) (A-i B) \int \frac {1}{\frac {i \tan ^2(c+d x)}{b}+\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{b d}}{a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {2 b (A b-a B)}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {A \left (a^2+b^2\right ) \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx+\frac {a (-b+i a) (A-i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}-\frac {a (b+i a) (A+i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}}{a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 4117

\(\displaystyle \frac {2 b (A b-a B)}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {A \left (a^2+b^2\right ) \int \frac {\cot (c+d x)}{\sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{d}+\frac {a (-b+i a) (A-i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}-\frac {a (b+i a) (A+i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}}{a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {2 b (A b-a B)}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {2 A \left (a^2+b^2\right ) \int \frac {1}{\frac {a+b \tan (c+d x)}{b}-\frac {a}{b}}d\sqrt {a+b \tan (c+d x)}}{b d}+\frac {a (-b+i a) (A-i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}-\frac {a (b+i a) (A+i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}}{a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {2 b (A b-a B)}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {-\frac {2 A \left (a^2+b^2\right ) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a} d}+\frac {a (-b+i a) (A-i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}-\frac {a (b+i a) (A+i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}}{a \left (a^2+b^2\right )}\)

input
Int[(Cot[c + d*x]*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(3/2),x]
 
output
((a*(I*a - b)*(A - I*B)*ArcTan[Tan[c + d*x]/Sqrt[a - I*b]])/(Sqrt[a - I*b] 
*d) - (a*(I*a + b)*(A + I*B)*ArcTan[Tan[c + d*x]/Sqrt[a + I*b]])/(Sqrt[a + 
 I*b]*d) - (2*A*(a^2 + b^2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/(Sq 
rt[a]*d))/(a*(a^2 + b^2)) + (2*b*(A*b - a*B))/(a*(a^2 + b^2)*d*Sqrt[a + b* 
Tan[c + d*x]])
 

3.4.54.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4020
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[c*(d/f)   Subst[Int[(a + (b/d)*x)^m/(d^2 + 
c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]
 

rule 4022
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(c + I*d)/2   Int[(a + b*Tan[e + f*x])^m*( 
1 - I*Tan[e + f*x]), x], x] + Simp[(c - I*d)/2   Int[(a + b*Tan[e + f*x])^m 
*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c 
 - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]
 

rule 4092
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[b*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1) 
/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^ 
2 + b^2))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b* 
B*(b*c*(m + 1) + a*d*(n + 1)) + A*(a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2 
)) - (A*b - a*B)*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n 
+ 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && 
 NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] 
&& (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] 
 || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 

rule 4136
Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) 
+ (f_.)*(x_)]), x_Symbol] :> Simp[1/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^ 
n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Simp[ 
(A*b^2 - a*b*B + a^2*C)/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^n*((1 + Tan[ 
e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, 
 C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] & 
&  !GtQ[n, 0] &&  !LeQ[n, -1]
 
3.4.54.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(7981\) vs. \(2(145)=290\).

Time = 0.23 (sec) , antiderivative size = 7982, normalized size of antiderivative = 46.68

method result size
derivativedivides \(\text {Expression too large to display}\) \(7982\)
default \(\text {Expression too large to display}\) \(7982\)

input
int(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x,method=_RETURNVER 
BOSE)
 
output
result too large to display
 
3.4.54.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4402 vs. \(2 (139) = 278\).

Time = 4.11 (sec) , antiderivative size = 8820, normalized size of antiderivative = 51.58 \[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

input
integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorithm= 
"fricas")
 
output
Too large to include
 
3.4.54.6 Sympy [F]

\[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \cot {\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))**(3/2),x)
 
output
Integral((A + B*tan(c + d*x))*cot(c + d*x)/(a + b*tan(c + d*x))**(3/2), x)
 
3.4.54.7 Maxima [F]

\[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \cot \left (d x + c\right )}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorithm= 
"maxima")
 
output
integrate((B*tan(d*x + c) + A)*cot(d*x + c)/(b*tan(d*x + c) + a)^(3/2), x)
 
3.4.54.8 Giac [F(-1)]

Timed out. \[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorithm= 
"giac")
 
output
Timed out
 
3.4.54.9 Mupad [B] (verification not implemented)

Time = 15.35 (sec) , antiderivative size = 26139, normalized size of antiderivative = 152.86 \[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

input
int((cot(c + d*x)*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x))^(3/2),x)
 
output
atan(-(((-(((8*A^2*a^3*d^2 - 8*B^2*a^3*d^2 - 16*A*B*b^3*d^2 - 24*A^2*a*b^2 
*d^2 + 24*B^2*a*b^2*d^2 + 48*A*B*a^2*b*d^2)^2/4 - (A^4 + 2*A^2*B^2 + B^4)* 
(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2) - 4*A^2 
*a^3*d^2 + 4*B^2*a^3*d^2 + 8*A*B*b^3*d^2 + 12*A^2*a*b^2*d^2 - 12*B^2*a*b^2 
*d^2 - 24*A*B*a^2*b*d^2)/(16*(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^ 
2*d^4)))^(1/2)*(((a + b*tan(c + d*x))^(1/2)*(256*A^2*a^8*b^26*d^7 + 1472*A 
^2*a^10*b^24*d^7 + 3712*A^2*a^12*b^22*d^7 + 6272*A^2*a^14*b^20*d^7 + 9856* 
A^2*a^16*b^18*d^7 + 14336*A^2*a^18*b^16*d^7 + 15232*A^2*a^20*b^14*d^7 + 10 
112*A^2*a^22*b^12*d^7 + 3712*A^2*a^24*b^10*d^7 + 576*A^2*a^26*b^8*d^7 + 83 
2*B^2*a^10*b^24*d^7 + 5504*B^2*a^12*b^22*d^7 + 15232*B^2*a^14*b^20*d^7 + 2 
2400*B^2*a^16*b^18*d^7 + 17920*B^2*a^18*b^16*d^7 + 6272*B^2*a^20*b^14*d^7 
- 896*B^2*a^22*b^12*d^7 - 1408*B^2*a^24*b^10*d^7 - 320*B^2*a^26*b^8*d^7 - 
512*A*B*a^9*b^25*d^7 - 1792*A*B*a^11*b^23*d^7 + 1792*A*B*a^13*b^21*d^7 + 1 
9712*A*B*a^15*b^19*d^7 + 44800*A*B*a^17*b^17*d^7 + 51968*A*B*a^19*b^15*d^7 
 + 34048*A*B*a^21*b^13*d^7 + 12032*A*B*a^23*b^11*d^7 + 1792*A*B*a^25*b^9*d 
^7) + (-(((8*A^2*a^3*d^2 - 8*B^2*a^3*d^2 - 16*A*B*b^3*d^2 - 24*A^2*a*b^2*d 
^2 + 24*B^2*a*b^2*d^2 + 48*A*B*a^2*b*d^2)^2/4 - (A^4 + 2*A^2*B^2 + B^4)*(1 
6*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2) - 4*A^2*a 
^3*d^2 + 4*B^2*a^3*d^2 + 8*A*B*b^3*d^2 + 12*A^2*a*b^2*d^2 - 12*B^2*a*b^2*d 
^2 - 24*A*B*a^2*b*d^2)/(16*(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b...